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Abstract. Segmentation and quantification of cell nuclei is an impor-
tant task in tissue microscopy image analysis. We introduce a deep learn-
ing method leveraging atrous spatial pyramid pooling for cell segmenta-
tion. We also present two different approaches for transfer learning using
datasets with a different number of channels. A quantitative comparison
with previous methods was performed on challenging glioblastoma cell
tissue images. We found that our transfer learning method improves the
segmentation result.

1 Introduction

Segmentation of cell nuclei is a frequent and important task in quantitative mi-
croscopy image analysis and for extracting phenotypes. In this work, we consider
the segmentation of nuclei from 3D tissue microscopy images of glioblastoma
cells. This data is very challenging due to strong intensity variation, cell cluster-
ing, poor edge information, missing object borders, strong shape variation, and
low signal-to-noise ratio (Fig. 1).

In previous work, several methods for cell segmentation were introduced (e.g.,
[1, 2]). Recently, deep learning methods achieved very good results [2]. When
only a small dataset is available for training, it is common in video image analysis
of natural scenes to pretrain a deep neural network on a large dataset like Ima-
geNet and fine-tune the network on the considered dataset [3]. However, images
of natural scenes are usually color images represented by three channels, but
microscopy images generally have a varying number of channels (and often more
than three channels). For a convolutional neural network, in the first layer a
filter is used for each channel to extract corresponding feature maps. Hence, the
number of channels is fixed in the network according to the considered data, and
the pretrained network cannot directly be transferred to data with a different
number of channels.
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In this work, we introduce a novel deep neural network based on atrous spatial
pyramid pooling (ASPP) for cell segmentation. We also present two transfer
learning approaches which use only one channel for training and perform fine-
tuning on more channels. In our application, we trained the neural network on a
one-channel dataset and transfer it to a dataset with four channels. We applied
our method to segment cell nuclei in challenging glioblastoma cell tissue images
and performed a quantitative comparison with previous methods.

2 Methods

Our proposed deep learning method combines a U-Net [2] with batch normal-
ization [4], residual connections [5], and atrous spatial pyramid pooling (ASPP)
[6]. ASPP has the advantage that large context information can be captured
at multiple image scales. We modified ASPP by using dilations of 1, 2, and
4 as well as global average pooling (pooling kernel equal to feature maps) to
capture information from the whole image. After the ASPP block we employ
Gaussian dropout (p=0.5). For our deep learning model we investigated PReLU
[7] activation functions. Using a U-Net in conjunction with a PReLU activation
function, we observed that the first layers mostly favour negative activations.
However, PReLU increases the computation time. Therefore, we used PReLU
only in the first layer to make use of negatively activated features, while saving
computation time.

Our network was trained using cross-validation and early stopping with the
Adam optimizer and a learning rate of linit = 0.001 as well as β1 = 0.9 and
β2 = 0.999. The dataset was always split into 50% training, 25% validation, and
25% testing data. We augmented the dataset using random flipping, rotation,
cropping (200× 200 pixels), color shift, and elastic deformations.

(a) Original image (b) Manual annotation

Fig. 1. DAPI channel of original tissue image of glioblastoma cells and ground truth
annotation.
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For transfer learning we employed two approaches. In the first approach, we
use the network trained on one channel (Fig. 2(a)) for all channels by altering
the first layer of the network and using the same trained convolutional filters for
all channels (Fig. 2(b)). This is motivated by the assumption that the trained
filters are generic for different types of images and can therefore be applied
to other channels with different stainings. In the second approach, we use the
trained convolutional filters for the corresponding channel in the new dataset and
initialize the filters for the other channels by MSRA initialisation [7] (Fig. 2(c)).
With this approach we keep the pretrained filters for one channel and train all
other filters from scratch.

2.1 Performance measures

We used four performance measures for quantitative evaluation: Object IOU,
IOU, Dice, and Warping Error. The object-based intersection over union (Object
IOU) measure quantifies the agreement between the segmentation result and the
ground truth for each object. We matched a ground truth object to a segmented
object, if the normalized overlap is more than 50%. In addition to this object-
based IOU, we also determined a pixel-based IOU. The Dice coefficient is defined
as the ratio of true positive pixels and the sum of pixels in ground truth and
segmentation. The Warping Error [8] is the minimum mean square error between
pixels of the segmentation and pixels of the topology-preserving warped ground
truth. We calculated all performance measures for each image and averaged over
the whole dataset.

3 Experimental results

We applied our method to tissue microscopy images of glioblastoma cells. Seg-
mentation of cell nuclei is important for subsequent analysis of telomeres and for
patient stratification [9]. The dataset consists of five 3D images and was acquired

(a) Original filter
trained on one channel

(b) Same trained filter
used for all channels

(c) Individual trained filter
for one channel

Fig. 2. Different approaches for transfer learning.
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Table 1. Performance of different segmentation methods. Bold and underline high-
lights the best result, and bold indicates the second best result.

Method Object IOU IOU Dice Warp Error [10−4]

Clustering & Thresholding 0.5782 0.6520 0.7884 0.093

Fast-Marching Level Set 0.5065 0.5682 0.7194 0.149

U-Net 0.6666 0.5774 0.7168 0.011

Proposed NN 0.7814 0.6154 0.7581 0.040

Proposed NN (transfer, same filter) 0.7913 0.5221 0.6709 0.045

Proposed NN (transfer, indiv. filters) 0.7981 0.6426 0.7775 0.030

by a Leica TCS SP5 point scanning confocal microscope with a 63x objective
lens and a voxel size of 100 × 100 × 250 nm. Four color channels were imaged
sequentially: PML antibody stain (Alexa 647), FISH CY3 telomere probe, FAM
labeled CENP-B PNA probe, and DAPI nuclei stain. 45 axial sections were ac-
quired for each 3D stack. The deep learning models with transfer learning were
trained on a second dataset with glioblastoma cells containing 50 images stained
with DAPI nuclei stain, before training on the considered first dataset. How-
ever, the second dataset has only one channel and consists of maximum intensity
projection (MIP) images. Therefore, standard transfer learning is not applica-
ble and we need other approaches such as the two transfer learning strategies
described in Section 2 above.

For a quantitative comparison, we also applied thresholding in combination
with mean shift clustering. The 3D images were preprocessed using 3D Gaus-
sian filtering (σ = 2pixels). We used an empirically determined threshold of
160. In addition, we used an approach based on Gaussian filtering, mean shift
clustering, and 3D fast-marching level sets [10]. The segmentation results were
post-processed using hole filling.

All segmentation methods were evaluated on the 3D images from the first
dataset, which were not used for training. We compared the segmentation results
for five 3D images each containing 65 sections (in total 325 2D images per channel
were used). Ground truth segmentations for all images were determined by
manual annotation. Table 1 shows the results for all methods for the different
evaluation metrics. It turns out that the proposed neural network combined with
transferring individual filters performs best for object-based IOU and second best
for IOU, Dice and Warping Error. Segmentation results for an example image
are provided in Fig. 3. It can be seen that the proposed network performs best.
In addition, transferring individual filters improves cell separation. The high
object-based IOU and low Warping Error indicates that the proposed model is
more suited to correctly merge and split objects.

4 Conclusion

We presented a deep neural network based on ASPP for cell segmentation com-
bined with two approaches for transfer learning to transfer trained networks from
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one-channel data to multi-channel data. Based on a quantiative comparison us-
ing glioblastoma cell tissue images we showed that transfer learning improves
the performance. Our novel deep neural network in conjunction with transfer
learning and individual filters performed best for Object IOU and second best
for Dice and Warping Error.

Acknowledgement. Support of the BMBF within the projects CancerTelSys
(e:Med) and de.NBI (HD-HuB) is gratefully acknowledged.

(a) Original image (b) Ground truth (c) Cluster. & Thresholding

(d) Fast-Marching Level Set (e) U-Net (f) Proposed NN

(g) Proposed NN (transfer,
same filter)

(h) Proposed NN (transfer,
individual filters)

Fig. 3. Example tissue microscopy image of glioblastoma cells, ground truth, and
segmentation results of different methods.
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